Introduction

For this project, we explored the use of deep learning methods to generate music. In particular, we

- developed a novel neural network architecture,
- trained various configurations of the neural network on a dataset of classical music,
- transferred learned representations from the classical dataset to a jazz dataset,
- generated a collection of musical segments for the various network configurations, and
- surveyed a sample of peers to quantitatively assess the effectiveness of the various configurations.

Model

The input is a segment of a musical piece, which is a matrix of 128 time steps, 88 notes, and 78 attributes. Each attribute is defined below:

- **Position**: The piano key position.
- **Pitch Class**: A categorical array of pitches.
- Vicinity: An array of neighboring note states.
- **Beat**: The location in a measure.

The output is a matrix of 88 notes and 2 predictions:

- **Play Probability**: The probability of the note being played.
- Articulate Probability: The probability of the note being held.

Figure 1: An overview of the music generation model.

Deep Jammer: A Music Generation Model

Justin Svegliato, Sam Witty

College of Information and Computer Science University of Massachusetts, Amherst

Figure 2: The neural network architecture of the music generation model.

Training

Training is conducted for both classical and jazz mu- sic as follows:	G ce
• Feed in <i>all</i> time steps of a random segment.	•]
• Predict <i>all</i> time steps as output.	•]
• Update the model weights using Adadelta.	-
• Repeat the process by feeding in the next	•]
segment.	Ç

The loss is defined as the negative log-likelihood of the model given the observed data:

Figure 3: The loss curve of the Large Network with Fine-Tuning.

Generation

Generation is slightly different from the training proess:

Feed in a *single* time step of a random segment. **Predict** the *next* time step as output.

Select the notes to be played.

Repeat the process by feeding in the *next* time step.

Figure 4: Music at various training stages for the Large Network.

Para Time Time Note Note Dens _____ Drop

We conducted an online survey where 26 participants assessed 14 generated segments and 2 real segments.

Mode Large Medi Smal Large Exter Fine-' Real Real

- [2] Johnson, D. Composing Music with Recurrent Neural Networks. Hexahedria, 2016.
- [3] Liu, I. and Ramakrishnan, B. Bach in 2014: Music Composition with Recurrent Neural Network. Arxiv, 2014.

Experiments

A variety of experiments were conducted to test the effects of network size and dropout.

Table 1: The hyperparameters used in the experiments.

meter	Large	Medium	Small	Dropout
e Layer 1 Size	300	150	75	300
e Layer 2 Size	300	150	75	300
e Layer 1 Size	100	50	25	100
e Layer 2 Size	50	25	13	50
se Layer Size	2	2	2	2
out Strength	0	0	0	0.5

Results

Table 2: The results of the survey.

<u>el</u>	Rating	Believability
e Network	6.7	76
um Network	6.2	73
l Network	6.1	67
e Network with Dropout	6.0	69
nded Training	4.3	40
Tuning	4.7	48
Classical	8.1	100
Jazz	7.3	92

References

[1] Conklin, D. Chord Sequence Generation with Semiotic Patterns. Journal of Mathematics and Music, 10 (2):92-106, 2016.